ABSTRACT
Leukemia Blood cancer is the most prevalent and it is very much dangerous among all type of cancers. Early detection of blood cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose blood cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the technician. To obviate these problems, image processing techniques is use in this study as promising modalities for detection of Leukemia blood cancer. The accuracy rate of the diagnosis of blood cancer by using image processing will be yield a slightly higher rate of accuracy then other traditional methods and will reduce the effort and time. We first discuss the preliminary of cell biology required to proceed to implement our proposed method. This project presents a new automated approach for blood Cancer detection and analysis from a given photograph of patient’s cancer affected blood sample. The proposed method is using image improvement, image segmentation for segmenting the different cells of blood, edge detection and final decision of blood cancer using Convolutional Neural Network (CNN). This project is develop in matlab.
PROJECT OUTPUT
PROJECT DEMO VIDEO
0 comments:
Post a Comment
Note: only a member of this blog may post a comment.