Tuesday, 21 January 2025

Leukemia Detection Using Deep Learning | Leukemia Blood Cancer Detection Using Matlab Major Project With Source Code

ABSTRACT

             Leukemia Blood cancer is the most prevalent and it is very much dangerous among all type of cancers. Early detection of blood cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose blood cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the technician. To obviate these problems, image processing techniques is use in this study as promising modalities for detection of Leukemia blood cancer. The rate of the diagnosis of blood cancer by using image processing will be yield a slightly higher rate of accuracy then other traditional methods and will reduce the effort and time. We first discuss the preliminary of cell biology required to proceed to implement our proposed method. This project presents a new automated approach for blood Cancer detection and analysis from a given photograph of patient’s cancer affected blood sample. The proposed method is using image improvement, image segmentation for segmenting the different cells of blood, edge detection and final decision of blood cancer using deep learning cnn in image processing. This project is developed in matlab.

PROJECT OUTPUT


PROECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Monday, 20 January 2025

Diabetic Retinopathy Detection Using Image Processing | Diabetic Retinopathy Prediction Using Matlab Final Year Major Project

 ABSTRACT

          Diabetic Retinopathy (DR) is one of the major causes of blindness in the western world. Increasing life expectancy, indulgent lifestyles and other contributing factors mean the number of people with diabetes is projected to continue rising. Regular screening of diabetic patients for DR has been shown to be a cost-effective and important aspect of their care. The accuracy and timing of this care is of significant importance to both the cost and effectiveness of treatment. If detected early enough, effective treatment of DR is available; making this a vital process. The diagnosis of diabetic retinopathy (DR) through color fundus images requires experienced clinicians to identify the presence and significance of many small features which, along with a complex grading system, makes this a difficult and time consuming task. In this project , we propose a image processing approach to diagnosing DR from digital fundus images and accurately classifying its severity. We develop a network with cnn architecture and data augmentation which can identify Diabetic Retinopathy. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Monday, 13 January 2025

Lung Nodule Segmentation Using Python OpenCV | Lung Nodule Detection Using Convolutional Neural Network Major Project With Source Code

ABSTRACT

        Lung nodule prevalence is one of the highest of cancers. One of the first steps in lung nodule diagnosis is sampling of lung tissues. These tissue samples are then microscopically analyzed. This procedure is taken once imaging tests indicate the presence of nodule cells in the chest. Lung nodule diagnosis using lung images. One of them is that doctor still relies on subjective visual observation. A medical specialist must do thorough observation and accurate analysis in detecting lung nodule in patients. Hence, there is need for a system that is capable for detecting lung nodule automatically from images of lungs. This method will improve the efficiency for lung nodule detection. The aim of this project is to detect a lung nodule detection system based on analysis of lung images using digital image processing. Lung images parameters extracted and classified using convolutional neural network (CNN). This method is implemented to detection of lung nodule of lung samples in python .

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Wheat Plant Disease Detection Using Image Processing | Wheat Plant Disease Classification Using Matlab Project With Source Code

ABSTRACT

                    Now-a-days wheat plants are getting infected by different types of diseases very rapidly. It is must to come up with new system to single out diseases. It is must to design and implement such a system that can easily find out the diseases infected by plants. In India many crops are cultivated, out of which wheat being one of the most important food grain that this country cultivates and exports. Thus it can be seen that wheat forms a major part of the Indian agricultural system and India’s economy. Hence, maintenance of the steady production of above stated crop is very important. The main idea of this project is to provide a system for detecting wheat leaf diseases. The given system will find the disease on leaf image of a wheat plant through image processing this project is develop in python. Former algorithms are used for extracting vital information from the leaf and the latter is used for detecting the disease that it is infected with. This Project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Sunday, 12 January 2025

Mango Plant Disease Detection and Pesticide Suggestion Using Python Project | Mango Plant Disease Prediction Final Year Major Project

ABSTRACT

            The mango fruit is popular because of its wide range of adaptability, high nutritional value, different variety, delicious taste and excellent flavor. The fruit contains vitamin A and vitamin C in a rich extent. The crop is prone to diseases like Powdery mildew, Anthracnose, Red Rust, Golmich, etc. Disorders may also impact the plant in the absence of effective case and control measures. These include change of form, biennial bearing, fall of fruit, black top, clustering, etc. The farmer must consult and take professional support for the prevention / control of diseases and crop disorder. New techniques of detecting mango disease are required to promote better control to avoid this crisis. By considering this, project describes image recognition which provides cost effective and scalable disease detection technology. This project further describes new convolutional neural network models which give an opportunity for easy deployment of this technology.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com