Wednesday, 28 May 2025

Types of Brain Tumor Detection Using Machine Learning CNN | Matlab Project With Source Code | Final Year Project

ABSTRACT

            A tumor can be defined as a mass which grows without any control of normal forces. Real time diagnosis of tumors by using more reliable algorithms has been an active of the latest developments in medical imaging and detection of brain tumor in MR scan images. Hence image segmentation is the fundamental problem used in tumor detection. Image segmentation can be defined as the partition or segmentation of a digital image into similar regions with a main aim to simplify the image under consideration into something that is more meaningful and easier to analyze visually. Brain tumor is an abnormal growth caused by cells reproducing themselves in an uncontrolled manner. Magnetic Resonance Image (MRI) is the commonly used device for diagnosis. In MR images, the amount of data is too much for manual interpretation and analysis. During the past few years, brain tumor segmentation in Magnetic Resonance Imaging(MRI) has become an emergent research area in the field of medical imaging system. Accurate detection of size and location of brain tumor plays a vital role in the diagnosis of tumor. Image processing is an active research area in which medical image processing is a highly challenging field. Image segmentation plays a significant role in image processing as it helps in the extraction of suspicious regions from the medical images. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Saturday, 10 May 2025

Paddy Plant Disease Detection Using Python Opencv | Paddy Leaf Disease Prediction Using Image Processing Python Project With Source Code

ABSTRACT

           Agriculture is the main backbone for most of the developing/developed countries; agriculture production itself is the main feed for ever growing populations and it is the major source of income for the rural people/farmers especially in India. In India farmers are called “the backbone of India”. The main aim of the proposed system is to detect, classify the diseases in paddy leafs. Paddy leaf Diseases Classification done using Convolutional Neural Network (CNN) classifiers. The proposed system has been experimentally tested for our own dataset and results achieved are encouraging. Paddy Plant Disease Detection Using Python Opencv This project is developed in python opencv.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Friday, 9 May 2025

Palmprint Recognition Using Matlab | Palmprint Classification Using Image Processing Final Year Major Project With Source Code

ABSTRACT

                 Palm  print  authentication  is  one  of  the  modern  bio-metric techniques, which employs the vein pattern  in  the  human palm  to  verify  the  person.  The merits  of  palm  vein  on classical  bio-metric  (e.g.  fingerprint,  iris,  face)  are  a  low risk  of  falsification,  difficulty  of  duplicated  and  stability. In  this  Project,  a  new  method  is  proposed  for  personal verification  based  on  palm  Print  features.  In  the propose method,  the  palm  vein  images  are  firstly  enhanced  and then  the  features  are extracted  by  using  bank  of  Gabor filters. Bio-metric   technology   refers   to   a pattern recognition system  which  depends  on  physical  or  behavioral  features for the  person  identification. This project is developed in matlab using image processing. Palmprint Classification Using Image Processing Final Year Major Project With Source Code.

PROJECT OUTPUT

PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Types of Lung Cancer Detection Using CNN Convolutional Neural Network | Final Year Matlab Project With Source Code

ABSTRACT

             Lung cancer prevalence is one of the highest of cancers. One of the first steps in lung cancer diagnosis is sampling of lung images. This procedure is taken once imaging tests indicate the presence of cancer cells in the chest. Types of lung cancer diagnosis in lung images using Convolutional Neural Network (CNN). One of them is that doctor still relies on subjective visual observation. A medical specialist must do thorough observation and accurate analysis in detecting lung cancer in patients. Hence, there is need for a system that is capable for detecting lung cancer automatically from lung images. The aim of this project is to develop type of lung cancer detection system based on analysis of lung image using digital image processing. Lung images are classified for detecting types of lung cancer like Adenocarcinoma, Squamous Cell Carcinoma, Normal Lung and Large Cell Carcinoma using Convolutional Neural Network (CNN). This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Wednesday, 30 April 2025

Brain Tumor Detection Using Python Opencv | Brain Tumor Classification Using Deep Learning CNN Python Project With Source Code Major Project

ABSTRACT

          Brain is the kernel part of the body. Brain has a very complex structure. Brain is hidden from direct view by the protective skull. This skull gives brain protection from injuries as well as it hinders the study of its function in both health and disease. But brain can be affected by a problem which cause change in its normal structure and its normal behavior .This problem is known as brain tumor. Brain tumor causes the abnormal growth of the cells in the brain. The cells which supplies the brain in the arteries are tightly bound together thereby routine laboratory test are inadequate to analyze the chemistry of brain. Brain tumor diagnosis is a very crucial task. This system provides an efficient and fast way for diagnosis of the brain tumor. Proposed system consists of multiple phases. First phase consists of texture feature extraction from brain MRI images. Second phase classify brain images on the bases of these texture feature using machine learning classifier. After classification tumor region is extracted from those images which are classified as malignant or benign. Segmentation consists of tumor extraction phases. This project is developed in python opencv using deep learning cnn.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Paddy Leaf Disease Detection Using Machine Learning CNN | Paddy Plant Disease Classification Using Matlab Project With Source Code

ABSTRACT

           Agriculture is the main backbone for most of the developing/developed countries; agriculture production itself is the main feed for ever growing populations and it is the major source of income for the rural people/farmers especially in India. In India farmers are called “the backbone of India”. The main aim of the proposed system is to detect, classify the diseases in paddy leafs. Paddy leaf diseases detection done using image processing and cnn techniques. The proposed system has been experimentally tested for our own dataset and results achieved are encouraging. The spread of plant pests and diseases has increased dramatically in recent years. Globalization, trade and climate change, as well as reduced resilience in production systems due to decades of agricultural intensification, have all played a part. Plant pathogens can be fungal, bacterial, viral or nematodes and can damage plant parts above or below the ground. This project is developed in matlab using machine learning cnn.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Sunday, 6 April 2025

Melanoma Skin Cancer Detection Using Python OpenCV | Skin Cancer Prediction Using Image Processing Final Year Project With Source Code

ABSTRACT

         Skin cancer also known as melanoma it is one of the deadliest form of cancer if not recognized in time. Since the pigmented areas/moles of the skin can be nicely observed by simple, non-invasive visual inspection the clinical protocols of its recognition also consider several visual features. Melanoma is the deadliest form of skin cancer, which is considered one of the most common human malignancies in the world. Early detection of this disease can affect the result of the illness and improve the chance of surviving. The tremendous improvement of deep learning algorithms in image recognition tasks promises a great success for medical image analysis, in particular, melanoma classification for skin cancer diagnosis. Activation functions play an important role in the performance of deep neural networks for image recognition problems as well as medical image classification. Melanin is the pigment that discerns the color of human skin. The special cells produce melanin in the skin. If these cells are damaged or unhealthy, skin discoloration is visible. Skin pigment discoloration on cheeks is a hazardous fact as a symptom of human skin disease with a possibility of losing natural beauty. The extracted information of the skin discoloration can work as a guide to diagnosis the disease. In this research, extract the information of cheek’s discoloration lesion by measuring the pixel number of lesion on skin. This project is developed in python.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Tuesday, 25 March 2025

Corn Leaf Disease Detection Using Matlab | Corn Plant Disease Detection Using Image Processing | Final Year Project

ABSTRACT

            Plant leaf diseases can affect plant leaves to a certain extent that the plants can collapse and die completely. These diseases may drastically decrease the supply of vegetables and fruits to the market, and result in a low agricultural economy. In the literature, different laboratory methods of plant leaf disease detection have been used. These methods were time consuming and could not cover large areas for the detection of leaf diseases. A novel way of training and methodology was used to expedite a quick and easy implementation of the system in practice. The developed model was able to recognize different types of Corn leaf diseases out of healthy leaves, Corn Leaf Blight, Common Rust and Corn Leaf Spot diseases were chosen for this study as they affect most parts of Corn Plant. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Real Time Face Recognition Using Matlab | Real Time Face Recognition Using Image Processing | Final Year Project

ABSTRACT

             The subject of face recognition is as old as computer vision because of the practical importance of the topic and theoretical interest from cognitive scientists. Despite the fact that other methods of identification (such as fingerprints, or iris scans) can be more accurate, face recognition has always remains a major focus of research because of its noninvasive nature and because it is people's primary method of person identification. This electronic document is about face detection. In computer literature face detection has been one of the most studied topics. Given an arbitrary image, the goal of this project is to determine real time face recognition. While this appears to be a trivial task for human beings, it is very challenging task for computers. The difficulty associated with face detection can be attributed to many variations in scale, location, view point, illumination, occlusions, etc. Although there have been hundreds of reports reported approaches for face detection, if one were asked to name a single face detection algorithm that has most impact in recent decades, it will most likely be the face detection, which is capable of processing images extremely rapidly and achieve high detection rates.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Saturday, 15 March 2025

Soybean Leaf Diseases Detection Using Image Processing | Soyabean Leaf Diseases Detection Using CNN Matlab Final Project

ABSTRACT

          India is an agricultural country and soybean production is one of the major sources of earning. Due to the major factors like diseases, pest attacks, and sudden changes in the weather condition, the productivity of the soybean crop decreases. Automatic detection of soybean plant diseases is essential to detect the symptoms of soybean diseases as early as they appear on the growing stage. This project proposed a methodology for the analysis and detection of soybean plant leaf diseases using recent digital image processing techniques. In this project, experimental results demonstrate that the proposed method can successfully detect and classify the major soybean diseases like Soybean Rust, Powdery Mildew, Frogeye Leaf Spot, Downy Mildew, etc. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Friday, 14 March 2025

Fruit Disease Detection Using Deep Learning | Fruit Disease Classification Using Matlab | Final Year Project Code

ABSTRACT

            Diseases in fruit cause devastating problem in economic losses and production in agricultural industry worldwide. Fruit diseases can cause significant losses in yield and quality appeared in harvesting. For example, soybean rust (a fungal disease in soybeans) has caused a significant economic loss and just by removing 20% of the infection, the farmers may benefit with an approximately 11 million-dollar profit (Roberts et al., 2006). Some fruit diseases also infect other areas of the tree causing diseases of twigs, leaves and branches. An early detection of fruit diseases can aid in decreasing such losses and can stop further spread of diseases. A lot of work has been done to automate the visual inspection of the fruits by machine vision with respect to size and color. However, detection of defects in the fruits using images is still problematic due to the natural variability of skin color in different types of fruits, high variance of defect types, and presence of stem/calyx. To know what control factors to consider next year to overcome similar losses, it is of great significance to analyze what is being observed. In this project, Fruit Disease Detection done Using Deep Learning cnn convolutional neural network in matlab. The image processing based proposed approach is composed this project. Our experimental results express that the proposed solution can significantly support accurate detection and automatic classification of fruit diseases. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Wednesday, 19 February 2025

Fingerprint Recognition Using Matlab | Fingerprint Recognition Using Image Processing | Final Year Major Project With Source Code

ABSTRACT

        Recently, monitoring and security have become an essential and important affair because the number of counterfeiters and hacker are increased for the conventional methods like Personal Identification Number (PIN) and passwords. The traditional methods suffer from some type of contraventions and breaches for example the unauthorized user can arrive to important data in a dedicated system to delete, change, or even steal it. For averting whole these concerns; the modern community directs to more credibility methods recently utilize the biometric-technologies. Biometrics provides more secure way of person authentication, they are difficult to be stolen and replicated. Biometrics method can be depicted as an automate technique to recognize person automatically based on his or her behavioral and/or physiological features. This technology has possessed a big amount of concern and care for security in almost all aspects of our daily life since person cannot forget or lose their physiological features in the way that they might lose password or an identity card. Biometric technologies have been developed for automatic recognizing of human identity depending on person special biological features, such as face, Iris, speech and fingerprint. The online security of authentication systems is not only a substitution of secret codes and passwords, but it is also related to securing and monitoring the system in different level of potential applications. This project was analyzed and evaluation Uni-modal biometric system based on fingerprint identification system. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Tuesday, 21 January 2025

Leukemia Detection Using Deep Learning | Leukemia Blood Cancer Detection Using Matlab Major Project With Source Code

ABSTRACT

             Leukemia Blood cancer is the most prevalent and it is very much dangerous among all type of cancers. Early detection of blood cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose blood cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the technician. To obviate these problems, image processing techniques is use in this study as promising modalities for detection of Leukemia blood cancer. The rate of the diagnosis of blood cancer by using image processing will be yield a slightly higher rate of accuracy then other traditional methods and will reduce the effort and time. We first discuss the preliminary of cell biology required to proceed to implement our proposed method. This project presents a new automated approach for blood Cancer detection and analysis from a given photograph of patient’s cancer affected blood sample. The proposed method is using image improvement, image segmentation for segmenting the different cells of blood, edge detection and final decision of blood cancer using deep learning cnn in image processing. This project is developed in matlab.

PROJECT OUTPUT


PROECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Monday, 20 January 2025

Diabetic Retinopathy Detection Using Image Processing | Diabetic Retinopathy Prediction Using Matlab Final Year Major Project

 ABSTRACT

          Diabetic Retinopathy (DR) is one of the major causes of blindness in the western world. Increasing life expectancy, indulgent lifestyles and other contributing factors mean the number of people with diabetes is projected to continue rising. Regular screening of diabetic patients for DR has been shown to be a cost-effective and important aspect of their care. The accuracy and timing of this care is of significant importance to both the cost and effectiveness of treatment. If detected early enough, effective treatment of DR is available; making this a vital process. The diagnosis of diabetic retinopathy (DR) through color fundus images requires experienced clinicians to identify the presence and significance of many small features which, along with a complex grading system, makes this a difficult and time consuming task. In this project , we propose a image processing approach to diagnosing DR from digital fundus images and accurately classifying its severity. We develop a network with cnn architecture and data augmentation which can identify Diabetic Retinopathy. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Monday, 13 January 2025

Lung Nodule Segmentation Using Python OpenCV | Lung Nodule Detection Using Convolutional Neural Network Major Project With Source Code

ABSTRACT

        Lung nodule prevalence is one of the highest of cancers. One of the first steps in lung nodule diagnosis is sampling of lung tissues. These tissue samples are then microscopically analyzed. This procedure is taken once imaging tests indicate the presence of nodule cells in the chest. Lung nodule diagnosis using lung images. One of them is that doctor still relies on subjective visual observation. A medical specialist must do thorough observation and accurate analysis in detecting lung nodule in patients. Hence, there is need for a system that is capable for detecting lung nodule automatically from images of lungs. This method will improve the efficiency for lung nodule detection. The aim of this project is to detect a lung nodule detection system based on analysis of lung images using digital image processing. Lung images parameters extracted and classified using convolutional neural network (CNN). This method is implemented to detection of lung nodule of lung samples in python .

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Wheat Plant Disease Detection Using Image Processing | Wheat Plant Disease Classification Using Matlab Project With Source Code

ABSTRACT

                    Now-a-days wheat plants are getting infected by different types of diseases very rapidly. It is must to come up with new system to single out diseases. It is must to design and implement such a system that can easily find out the diseases infected by plants. In India many crops are cultivated, out of which wheat being one of the most important food grain that this country cultivates and exports. Thus it can be seen that wheat forms a major part of the Indian agricultural system and India’s economy. Hence, maintenance of the steady production of above stated crop is very important. The main idea of this project is to provide a system for detecting wheat leaf diseases. The given system will find the disease on leaf image of a wheat plant through image processing this project is develop in python. Former algorithms are used for extracting vital information from the leaf and the latter is used for detecting the disease that it is infected with. This Project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Sunday, 12 January 2025

Mango Plant Disease Detection and Pesticide Suggestion Using Python Project | Mango Plant Disease Prediction Final Year Major Project

ABSTRACT

            The mango fruit is popular because of its wide range of adaptability, high nutritional value, different variety, delicious taste and excellent flavor. The fruit contains vitamin A and vitamin C in a rich extent. The crop is prone to diseases like Powdery mildew, Anthracnose, Red Rust, Golmich, etc. Disorders may also impact the plant in the absence of effective case and control measures. These include change of form, biennial bearing, fall of fruit, black top, clustering, etc. The farmer must consult and take professional support for the prevention / control of diseases and crop disorder. New techniques of detecting mango disease are required to promote better control to avoid this crisis. By considering this, project describes image recognition which provides cost effective and scalable disease detection technology. This project further describes new convolutional neural network models which give an opportunity for easy deployment of this technology.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com