ABSTRACT
Mango also called as The King of Fruits is one of the important fruit crops cultivated in different countries around the world. India produces about 40% of the global mango production and ranks first among the worlds mango producing countries. It is estimated that, pests and diseases destroy approximately 30 - 40% of the crop yield. The identification of plant diseases plays a vital role in taking disease control measures in order to improve the quality and quantity of crop yield. Automation of plant diseases is very much beneficial as it reduces the monitoring work in large farms. Leaves being the food source for plants, the early and accurate detection of leaf diseases is important. The mango fruit is popular because of its wide range of adaptability, high nutritional value, different variety, delicious taste and excellent flavor. The fruit contains vitamin A and vitamin C in a rich extent. The crop is prone to diseases like Powdery mildew, Anthracnose, Red Rust, etc. Disorders may also impact the plant in the absence of effective case and control measures. The farmer must consult and take professional support for the prevention / control of diseases and crop disorder. New techniques of detecting mango disease are required to promote better control to avoid this crisis. By considering this, project describes image recognition which provides cost effective and scalable disease detection technology. This project further describes new convolutional neural network models which give an opportunity for easy deployment of this technology. This project is developed in matlab using cnn in image processing.
PROJECT OUTPUT
PROECT DEMO VIDEO
0 comments:
Post a Comment
Note: only a member of this blog may post a comment.