Wednesday, 25 September 2024

Paddy Leaf Disease Detection Using CNN | Paddy Leaf Disease Classification Using Python Project With Source Code | Final Year Major Project Code

ABSTRACT

           Agriculture is the main backbone for most of the developing/developed countries; agriculture production itself is the main feed for ever growing populations and it is the major source of income for the rural people/farmers especially in India. In India farmers are called “the backbone of India”. The main aim of the proposed system is to detect, classify the diseases in paddy leafs. Paddy leaf Diseases Classification done using Convolutional Neural Network (CNN) classifiers. The proposed system has been experimentally tested for our own dataset and results achieved are encouraging. This project is developed in python.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Monday, 23 September 2024

Fruit Recognition Using Image Processing | Fruit Identification Using Matlab Project With Source Code | Final Year Major Project Code

ABSTRACT

          The ability to identify the fruits based on the quality in food industry is very important nowadays where every person has become health conscious. There are different types of fruits available in the market. However, to identify best quality fruits is cumbersome task. Therefore, we come up with the system where fruit is detected under natural lighting conditions. The method used is texture detection method and shape detection. For this methodology, we use image processing to detect particular eight type of fruit. This fruit detection project is implemented in matlab using image processing.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Friday, 13 September 2024

Diabetic Retinopathy Detection Using Deep Learning | Diabetic Retinopathy Classification Using Matlab Project With Source Code | Final Year Project

ABSTRACT

           Diabetic Retinopathy (DR) is a chronic health disease which requires early detection and treatment. It is important to identify DR using an intelligent system for faster prediction since manual examination and detection of the disease are unreliable and highly prone to error. Therefore, various researchers and medical experts have adopted and approached for advanced feature extraction and image classification, for early DR detection. Diabetic Retinopathy is a consequence of diabetes that affects the eyes. Damaged blood vessels in the retina, a light-sensitive tissue, are the primary cause of DR. Patients with Type 1 or Type 2 diabetes are more likely to have this condition. If the patient has a long-term case  of diabetes and  the blood sugar  level is  not regulated consistently, the odds of this  issue developing in the eye increase.  Diabetic  Retinopathy is  one  of  the most  common causes  of  blindness  in  the Western  countries. Preventing Diabetic Retinopathy has  found to be quite beneficial when people with  diabetes are  monitored regularly. This  process is  shown to be essential if Diabetic Retinopathy is discovered in its early stages due to the availability of treatment. Diabetic Retinopathy, the main cause of blindness among working-age adults, affects millions of individuals. Diabetic  Retinopathy  is  a  medical  disorder  in  which  diabetes  mellitus  causes  damage  to  the  retina.  Diabetic Retinopathy  is diagnosed  using  colored  fundus  images,  which  requires  trained clinicians  to recognize  the  presence  and importance  of  several tiny  characteristics,  making  it a  time-consuming  task.  We present  a  deep learning based  technique to  detect Diabetic Retinopathy in fundus images in this project. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Thursday, 12 September 2024

Grape Leaf Disease Detection And Pesticides Suggestion Using Image Processing | Grape Plant Disease Classification Using Python Project with Source Code | Final Year Major Project

ABSTRACT

         Grapes is basically a sub-tropical plant having excellent pulp content, rich color and is highly beneficial to health. Generally, it is very time-consuming and laborious for farmers of remote areas to identify grapes leaf diseases due to unavailability of experts. Though experts are available in some areas, disease detection is performed by naked eye which causes inappropriate recognition. An automated system can minimize these problems. The disease on the grape plant usually starts on the leaf and then moves onto the stem, root and the fruit. Once the disease reaches the fruit the whole plant gets destroyed. The approach is to detect the disease on the leaf itself in order to save the fruit. In our proposed system we have used a image processing model. Image of the leaf is captured using the built-in camera module of a mobile phone. The accuracy achieved is 98 % in this project. This project is developed in python.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com