Friday, 30 August 2024

Types of Brain Tumor Detection Using Deep Learning | Brain Tumor Types Classification Using Matlab Project With Source Code | Final Year Major Project

ABSTRACT

            A tumor can be defined as a mass which grows without any control of normal forces. Real time diagnosis of tumors by using more reliable algorithms has been an active of the latest developments in medical imaging and detection of brain tumor in MR scan images. Hence image segmentation is the fundamental problem used in tumor detection. Image segmentation can be defined as the partition or segmentation of a digital image into similar regions with a main aim to simplify the image under consideration into something that is more meaningful and easier to analyze visually. Brain tumor is an abnormal growth caused by cells reproducing themselves in an uncontrolled manner. Magnetic Resonance Image (MRI) is the commonly used device for diagnosis. In MR images, the amount of data is too much for manual interpretation and analysis. During the past few years, brain tumor segmentation in Magnetic Resonance Imaging(MRI) has become an emergent research area in the field of medical imaging system. Accurate detection of size and location of brain tumor plays a vital role in the diagnosis of tumor. Image processing is an active research area in which medical image processing is a highly challenging field. Image segmentation plays a significant role in image processing as it helps in the extraction of suspicious regions from the medical images. This project is developed in python using deep learning.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Monday, 26 August 2024

Anemia Disease Detection Using Image Processing | Anemia Disease Classification Using Matlab Project With Source Code | Final Year Major Project

ABSTRACT

          Anemia is a blood disorder which results from the abnormalities of red blood cells and shortens the life expectancy to 42 and 48 years for males and females respectively. It also causes pain jaundice, shortness of breath, etc. Anemia is characterized by the presence of abnormal cells like sickle cell, ovalocyte, anisopoikilocyte. Sickle cell disease usually presenting in childhood, occurs more commonly in people from parts of tropical and subtropical regions where malaria is or was very common. A healthy RBC is usually round in shape. But sometimes it changes its shape to form a sickle cell structure; this is called as sickling of RBC. Majority of the sickle cells (whose shape is like crescent moon) found are due to low haemoglobin content. An image processing algorithm to automate the diagnosis of sickle-cells present in thin blood smears is developed. Images are acquired using a charge-coupled device camera connected to a light microscope. Clustering based segmentation techniques are used to identify erythrocytes (red blood cells) and Sickle-cells present on microscopic slides. Image features based on colour, texture and the geometry of the cells are generated, as well as features that make use of a priori knowledge of the classification problem and mimic features used by human technicians. The proposed image processing based identification of sickle-cells in anemic patient will be very helpful for automatic, sleek and effective diagnosis of the disease.

PROJECT OUTPUT

PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Tuesday, 6 August 2024

Tomato Leaf Disease Detection Using CNN Convolutional Neural Network | Tomato Plant Disease Classification Using Matlab Project with Source Code | Final Year Projects

ABSTRACT

          India is an agricultural country and soybean production is one of the major sources of earning. Due to the major factors like diseases, pest attacks, and sudden changes in the weather condition, the productivity of the soybean crop decreases. Automatic detection of tomato plant diseases is essential to detect the symptoms of tomato diseases as early as they appear on the growing stage. This project proposed a methodology for the analysis and detection of tomato plant leaf diseases using recent digital image processing techniques. In this project, experimental results demonstrate that the proposed method can successfully detect and classify the major tomato leaf diseases like Bacterial Spot, Blight Disease, Leaf Curl Virus Disease , Mosaic Virus Disease and Healthy Leaf. In this Project classification done using convolutional neural network CNN. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Monday, 5 August 2024

Rice Leaf Disease Detection Using CNN Convolutional Neural Network | Rice Plant Disease Classification Using Matlab Project with Source Code | Final Year Major Projects Code

ABSTRACT

                Agriculture plays an important role in the economic growth of every country and so it is necessary to ensure its development. The spread of various diseases in rice plants has increased in recent years. There is a variety of plant pathogens such as viral, bacterial, fungal and these can damage different plant parts above and below the ground. Agriculture is the primary source of livelihood for about more than 50% of the Indian population and rice is one of the major food grains of India. It is observed that rice plant diseases are the major contributors to reduce the production & quality of food. Identification of such diseases may improve the production quality. This project gives an idea about deep learning algorithm which is used to detect deadly diseases in rice plants. Much research has been done to automate the rice plant disease detection process using images of the leaf. This project is developed in matlab using Convolutional Neural Network .

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Sunday, 4 August 2024

Acne Disease Detection Using Convolutional Neural Network CNN In Image Processing | Acne Disease Classification Using Python Project With Source Code | Final Year Major Projects

ABSTRACT

          Acne is a chronic skin disease occurring from inflammation of pilosebaceous units which are hair follicles under skin and their surrounding sebaceous gland (fatty gland) clog up. Currently, dermatologist has to manually mark a location of acnes on the sheet, then count to quantify and measure treatment progress. This is an unreliable and inaccurate method. Moreover, this method requires dermatologist’s excessive effort. In this project, a novel automatic acne disease detection using Image processing technique is proposed. Acne causes significant physical and psychological problems for patients such as permanent scarring, depression and anxiety from poor self-image. When you have acnes, go to see dermatologist early is the safest way to heal and prevent future permanent scars. Acne can be caused by many factors such as overactive oil glands that produce too much oil, combine with skin cells to make pores in the skin, become plugged and p-acne bacteria cause acne disease. This project is developed in python.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com

Saturday, 3 August 2024

Real Time Face Recognition Using Image Processing | Real Time Face Recognition Using Matlab Project With Source Code | Final Year Major Projects

ABSTRACT

             The subject of face recognition is as old as computer vision because of the practical importance of the topic and theoretical interest from cognitive scientists. Despite the fact that other methods of identification (such as fingerprints, or iris scans) can be more accurate, face recognition has always remains a major focus of research because of its noninvasive nature and because it is people's primary method of person identification. This electronic document is about face detection. In computer literature face detection has been one of the most studied topics. Given an arbitrary image, the goal of this project is to determine real time face recognition. While this appears to be a trivial task for human beings, it is very challenging task for computers. The difficulty associated with face detection can be attributed to many variations in scale, location, view point, illumination, occlusions, etc. Although there have been hundreds of reports reported approaches for face detection, if one were asked to name a single face detection algorithm that has most impact in recent decades, it will most likely be the face detection, which is capable of processing images extremely rapidly and achieve high detection rates.

PROJECT OUTPUT

PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Friday, 2 August 2024

Rice Leaf Disease Detection Using Deep Learning | Rice Plant Disease Classification Using Python Project with Source Code | Final Year Projects Code

ABSTRACT

                Agriculture plays an important role in the economic growth of every country and so it is necessary to ensure its development. The spread of various diseases in rice plants has increased in recent years. There is a variety of plant pathogens such as viral, bacterial, fungal and these can damage different plant parts above and below the ground. Agriculture is the primary source of livelihood for about more than 50% of the Indian population and rice is one of the major food grains of India. It is observed that rice plant diseases are the major contributors to reduce the production & quality of food. Identification of such diseases may improve the production quality. This project gives an idea about deep learning algorithm which is used to detect deadly diseases in rice plants. Much research has been done to automate the rice plant disease detection process using images of the leaf. This project is developed in python using deep learning with accuracy of up to 99%.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +91-7276355704
Email: roshanphelonde@rediffmail.com

Thursday, 1 August 2024

Iris Recognition Using Image Processing | Iris Recognition Using Matlab Project Project With Source Code | IEEE Based Final Year Major Projects Codes

ABSTRACT

             This project presents an iris coding method for effective recognition of an individual. The recognition is performed based on a mathematical and computational method. It consists of calculating the differences coefficients of overlapped angular patches from the normalized iris image for the purpose of feature extraction. Iris recognition belongs to the biometric identification. Biometric identification is a technology that is used for the identification an individual based on ones physiological or behavioral characteristics. Iris is the strongest physiological feature for the recognition process because it offers most accurate and reliable results. Iris recognition process mainly involves three stages namely, iris image preprocessing, feature extraction and template matching. In the pre-processing step, iris localization algorithm is used to locate the inner and outer boundaries of the iris. Detected iris region is then normalized to a fixed size rectangular block. In the feature extraction step, texture analysis method is used to extract significant features from the normalized iris image. This project is developed in matlab.

PROJECT OUTPUT


PROJECT DEMO VIDEO

Contact:
Prof. Roshan P. Helonde
Mobile: +91-7276355704
WhatsApp: +917276355704
Email: roshanphelonde@rediffmail.com